Abstract

Given a solid 3D shape and a trajectory of it over time, we compute its swept volume - the union of all points contained within the shape at some moment in time. We consider the representation of the input and output as implicit functions, and lift the problem to 4D spacetime, where we show the problem gains a continuous structure which avoids expensive global searches. We exploit this structure via a continuation method which marches and reconstructs the zero level set of the swept volume, using the temporal dimension to avoid erroneous solutions. We show that, compared to other methods, our approach is not restricted to a limited class of shapes or trajectories, is extremely robust, and its asymptotic complexity is an order lower than standards used in the industry, enabling its use in applications such as modeling, constructive solid geometry, and path planning.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.