Abstract

BackgroundGenetic structure in many widely-distributed broadcast spawning marine invertebrates remains poorly understood, posing substantial challenges for their fishery management, conservation and aquaculture. Under the Core-Periphery Hypothesis (CPH), genetic diversity is expected to be highest at the centre of a species’ distribution, progressively decreasing with increased differentiation towards outer range limits, as populations become increasingly isolated, fragmented and locally adapted. The unique life history characteristics of many marine invertebrates such as high dispersal rates, stochastic survival and variable recruitment are also likely to influence how populations are organised. To examine the microevolutionary forces influencing population structure, connectivity and adaptive variation in a highly-dispersive bivalve, populations of the black-lip pearl oyster Pinctada margaritifera were examined across its ~18,000 km Indo-Pacific distribution.ResultsAnalyses utilising 9,624 genome-wide SNPs and 580 oysters, discovered differing patterns of significant and substantial broad-scale genetic structure between the Indian and Pacific Ocean basins. Indian Ocean populations were markedly divergent (Fst = 0.2534–0.4177, p < 0.001), compared to Pacific Ocean oysters, where basin-wide gene flow was much higher (Fst = 0.0007–0.1090, p < 0.001). Partitioning of genetic diversity (hierarchical AMOVA) attributed 18.1% of variance between ocean basins, whereas greater proportions were resolved within samples and populations (45.8% and 35.7% respectively). Visualisation of population structure at selectively neutral loci resolved three and five discrete genetic clusters for the Indian and Pacific Oceans respectively. Evaluation of genetic structure at adaptive loci for Pacific populations (89 SNPs under directional selection; Fst = 0.1012–0.4371, FDR = 0.05), revealed five clusters identical to those detected at neutral SNPs, suggesting environmental heterogeneity within the Pacific. Patterns of structure and connectivity were supported by Mantel tests of isolation by distance (IBD) and independent hydrodynamic particle dispersal simulations.ConclusionsIt is evident that genetic structure and connectivity across the natural range of P. margaritifera is highly complex, and produced by the interaction of ocean currents, IBD and seascape features at a broad scale, together with habitat geomorphology and local adaptation at regional levels. Overall population organisation is far more elaborate than generalised CPH predictions, however valuable insights for regional fishery management, and a greater understanding of range-wide genetic structure in a highly-dispersive marine invertebrate have been gained.

Highlights

  • Genetic structure in many widely-distributed broadcast spawning marine invertebrates remains poorly understood, posing substantial challenges for their fishery management, conservation and aquaculture

  • It is evident that genetic structure and connectivity across the natural range of P. margaritifera is highly complex, and produced by the interaction of ocean currents, isolation by distance (IBD) and seascape features at a broad scale, together with habitat geomorphology and local adaptation at regional levels

  • The first filtering step undertaken to remove duplicate Single nucleotide polymorphism (SNP) at genomic loci resulted in the removal of 8,079 SNPs (41% loss), after which the dataset was filtered for call rate (65%), average polymorphic information content (PIC) (1%), Minor Allele Frequency (MAF) (2%) and average repeatability (95%)

Read more

Summary

Introduction

Genetic structure in many widely-distributed broadcast spawning marine invertebrates remains poorly understood, posing substantial challenges for their fishery management, conservation and aquaculture. Under the Core-Periphery Hypothesis (CPH), genetic diversity is expected to be highest at the centre of a species’ distribution, progressively decreasing with increased differentiation towards outer range limits, as populations become increasingly isolated, fragmented and locally adapted. The CPH provides a model for interpreting how microevolutionary forces may shape genetic divergence patterns throughout a species’ range Under this model, a species which colonises a geographical gradient of environmental conditions, is over time expected to exhibit maximised abundance (highest survival, reproduction and growth rates) around a central point where conditions are optimal, while populations become smaller, more fragmented, increasingly divergent and influenced by selective forces towards the periphery [5, 7, 9]. Due to environmental heterogeneity across a C-M cline, local adaptation may be observed between populations existing at the core and range peripheries

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call