Abstract

AbstractA series of superabsorbent composites were prepared from acrylic acid (AA), acrylamide (AM), and Cloisite® 30B by aqueous solution polymerization technique using ammonium peroxodisulfate (APS) as initiator. The interaction of the organically modified nanoclay with PAA‐co‐PAM copolymer was verified by FTIR, whereas the morphology of the composite was studied by Scanning Electron Microscopy (SEM). The water absorbency in deionized water and saline water of the synthesized nanohydrogels was measured by calculating their percentage swelling ratio. The effects of copolymerization, monomer ratio, clay content, and temperature on the water absorbency were studied. The results indicated a considerable increase in swelling ratio by proper monomer proportion and incorporation of optimum clay percentage into the copolymer matrix. It was found that the nanohydrogel acquired highest water absorbency with 2% clay loading. The reswelling ability and water retention capacity of the PAA‐co‐PAM hydrogel and PAA‐co‐PAM/clay nanohydrogel were also measured. The water absorbency was found to increase after each reswelling for which it may be useful as recyclable superabsorbent material. The results of water retention capacity of the nanohydrogel were also encouraging and find application in agriculture, especially in drought‐prone areas. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.