Abstract

In China, Gaomiaozi (GMZ) bentonite is recognized as a barrier material for isolating nuclear waste. Different chemical solutions may change the hydraulic conductivity and swelling capacity of bentonite. Consequently, a series of swelling pressure and permeability experiments was carried out on bentonite-sand mixtures with various dry densities and infiltrating solutions. X-ray diffraction (XRD) and the field emission scanning electron microscope (FESEM) were carried out on the samples experiencing the tests to identify the influence of chemistry pore solutions upon the mineralogical and microstructure changes. The results show that the swelling pressure experienced rapid swelling, slow expansion, and the stable expansion stage for the specimens of infiltrating solutions except for NaOH. For the specimens infiltrated with NaOH solutions, the swelling pressure experienced rapid increases, slow decreases, and a stable development stage. With hyper-alkaline and hyper-salinity infiltration, the swelling pressure decreased, and the permeability increased. In addition, swelling pressure attained stability more quickly on contact with hyper-alkaline and hyper-salinity solutions. Comparing the test results, the results indicate that the influence of NaOH on the expansion and permeability was higher than NaCl-Na2SO4 at the same concentration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.