Abstract

A model is derived for the elastic response of polyelectrolyte gels subjected to unconstrained and constrained swelling. A gel is treated as a three-phase medium consisting of a solid phase (polymer network), solvent (water), and solutes (mobile ions). Transport of solvent and solutes is modeled as their diffusion through the network accelerated by an electric field formed by ions and accompanied by chemical reactions (dissociation of functional groups attached to the chains). Constitutive equations (including the van't Hoff law for ionic pressure and the Henderson-Hasselbach equation for ionization of chains) are derived by means of the free energy imbalance inequality. Good agreement is demonstrated between equilibrium swelling diagrams on several pH-sensitive gels and results of simulation. It is revealed that swelling of polyelectrolyte gels is driven by electrostatic repulsion of bound charges, whereas the effect of ionic pressure is of secondary importance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.