Abstract

AbstractA copolymer gel has been synthesized from N-vinylcaprolactam and dodecyl methacrylate in ethanol using the free radical cross-linking polymerization method. Characterizations of the gel were performed by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and thermal gravimetric analysis (TGA) techniques. Swelling behavior of the gel was investigated in heptane, toluene, and their binary mixtures with different compositions. Swelling value in toluene is higher than that in heptane and swelling value increases with the increasing initial content of toluene in the binary mixture with heptane. The swelling values are correlated by the first- and second-order differential equations, and the best model correlating the experimental results is a second-order one. Diffusion coefficients have also been calculated for heptane and toluene at each concentration by power-law and first-order equations. While the diffusion mechanism of the gel in heptane is a Fickian one, the gel swelled in toluene exhibits a non-Fickian character. Diffusion mechanisms of the gels in binary mixtures are much more complicated. Because of the higher swelling degree in toluene compared to that in heptane, selectivity of the gel in different {heptane + toluene} mixtures with selectivity close to 1 has also been taken into consideration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.