Abstract

The water swellable hydrogels are commonly used in the production of solid pharmaceutical dosage systems for oral administration (matrices). Their use allows to obtain the controlled drug release. The key role is played by the transport phenomena which take place: water up-take, gel swelling and erosion, increase in diffusivity due to hydration. Thus, knowledge of these phenomena is fundamental in designing and realizing the pharmaceutical systems. In this work, tablets made of pure hydrogel, HydroxyPropyl-MethylCellulose (HPMC), were produced and immersed in a thermostatic bath filled with stirred distilled water (37 °C). The water up-take was allowed only by radial direction (from the lateral surface) by confining the tablet between two glass slides. Two distinct methods, an optical technique already described in a previous work, and a gravimetric procedure described here, were applied to measure the water concentration profiles along the radial direction in the tablets. The data obtained were used both to clarify the nature of the transport phenomena involved, and to perform a better tuning of a mathematical model previously proposed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call