Abstract

In low K+ (LK) sheep red cells a significant fraction of the total ouabain-resistant (OR) K+ flux is inhibited when Cl- is replaced by other anions of the Hofmeister series except Br- (Cl(-)-dependent K+ flux). In contrast, high K+ (HK) sheep red cells in isosmotic media did not possess any significant OR Cl(-)-dependent K+ flux when Cl- was replaced by NO3- or I-. However, exposure to hyposmotic solutions, treatment with the sulfhydryl (SH) group reagent N-ethylmaleimide (NEM) or with the bivalent metal ion (Me2+) ionophore A23187 in absence of external Me2+ caused a significant activation of Cl(-)-dependent K+ transport as measured with Rb+ as K+ congener. There was no Cl(-)-dependent Rb+ flux in A23187-treated cells when Mn2+, Mg2+, and Ca2+ were present at 1 mM concentrations, suggesting that cellular accumulation of these Me2+ is inhibitory. Similar to LK red cells, HK red cells failed to respond to A23187 when pretreated with NEM supporting the hypothesis proposed recently (Lauf, P. K. J. Membr. Biol. 88: 1-13, 1985) of a common mechanism of Cl(-)-dependent K+ transport activation. The magnitudes of the Cl(-)-dependent Rb+ fluxes in HK cells were much smaller than those elicited by identical treatments in LK red cells, and the effect of all interventions was not due to the presence of reticulocytes known to possess Cl(-)-dependent K+ transport.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.