Abstract

It has been demonstrated experimentally that pre-stretch affects the swelling of an elastomeric membrane when it is exposed to a solvent. We study theoretically the one-dimensional swelling of a pre-stretched thin elastomeric sheet, bonded to an impermeable rigid substrate, to quantify the influence of pre-stretch. We show that the solvent uptake increases when pre-stretch increases, both at equilibrium and during the swelling transient, where it exhibits two different scaling regimes. The coupling between the solvent uptake and pre-stretch may be practically exploited to design soft actuators where the swelling-induced deformations can be controlled by varying the pre-stretch.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.