Abstract
Cholesteric liquid crystals can exhibit spatial patterns in molecular alignment at interfaces that can be exploited for particle assembly. These patterns emerge from the competition between bulk and surface energies, tunable with the system geometry. In this work, we use the osmotic swelling of cholesteric double emulsions to assemble colloidal particles through a pathway-dependent process. Particles can be repositioned from a surface-mediated to an elasticity-mediated state through dynamically thinning the cholesteric shell at a rate comparable to that of colloidal adsorption. By tuning the balance between surface and bulk energies with the system geometry, colloidal assemblies on the cholesteric interface can be molded by the underlying elastic field to form linear aggregates. The transition of adsorbed particles from surface regions with homeotropic anchoring to defect regions is accompanied by a reduction in particle mobility. The arrested assemblies subsequently map out and stabilize topological defects. These results demonstrate the kinetic arrest of interfacial particles within definable patterns by regulating the energetic frustration within cholesterics. This work highlights the importance of kinetic pathways for particle assembly in liquid crystals, of relevance to optical and energy applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.