Abstract

Urea, the main nitrogenous waste product of protein metabolism, is eliminated almost exclusively by the kidney, and hence, displays considerable clinical significance in the assessment of kidney disorders. The aim of this study is to prepare and investigate the potential of swellable cross-linked gelatin methacryloyl (c-GelMA) microneedles (MNs) as a platform for minimally invasive extraction of interstitial skin fluid (ISF) toward straightforward point-of-care healthcare monitoring of renal complaints, by quantification of urea. c-GelMA MNs are successfully prepared by photo-cross-linking and micromolding, faithfully replicating the master molds (387± 16 µm height, 200 µm base and 500 µm tip-to-tip distance). These MN patches display good mechanical properties, withstanding more than 0.15 N per needle without breaking. Ex vivo skin insertion assays reveal that the MNs penetrate up to 237 µm depth, reaching the dermis, where they should extract ISF considering a real application. In an in vitro application using an agarose skin model system, the c-GelMA MNs are able to efficiently recover urea (>98%). Additionally, these MNs exhibit noncytotoxic effects toward human keratinocytes. These findings suggest that c-GelMA MNs are promising devices for sampling ISF and offline analysis of urea, opening new avenues for simple point-of-care healthcare monitoring.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.