Abstract

Waves are fundamentally important for sediment re-suspension in estuary and coastal areas, especially for silty sediments, which can be easily suspended by waves, but the differential effects of swell and wind waves are still unclear. Integrated field observations were made from November 2012 to March 2013 including waves, currents, and suspending sediments on the offshore seabed of the Huanghe Delta to explore the mechanism of sediment re-suspension in silty coastal zones. During the five months of observation, there were more than 30 winter wind events that affected the study area and induced sediment re-suspension with varying suspended sediment concentration. The observed wave composition was separated into swell and wind waves using a bandpass filter. Results show that large swell (with significant height > 1.0 m) coming from the offshore direction (NE in our study area) dominated sediment resuspension in the coastal seabed due to the fact that this wind direction had the longest average fetch. Winds from the onshore direction usually had smaller swell due to their short fetches and caused limited sediment re-suspension. The residual currents caused by NE winds also transport larger sediment. An individual NE wind event could transport sediment 8–13.6 t/m2 and 5.1–8.2 t/m2 in directions parallel and perpendicular, respectively, to the isobaths, which is much higher than the sediment transportation during an individual NW wind event, which could transport 1.5–4 t/m2 and 0.6–5 t/m2 parallel and perpendicular, respectively, to the isobaths. Our research shows that large swell and the accompanying residual currents caused by NE winds (from offshore direction) are a vital driving force for sediment resuspension and transportation in the offshore zone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.