Abstract
Brownian dynamics play a key role in understanding the diffusive transport of micro particles in a bounded environment. In geometries containing confining walls, physical laws determine the behavior of the random trajectories at the boundaries. For impenetrable walls, imposing reflecting boundary conditions to the Brownian particles leads to dynamics described by reflecting stochastic differential equations. In practice, these stochastic differential equations as well as their refinements are quite challenging to handle, and more importantly, many physical processes are better modeled by processes conditioned to stay in a prescribed bounded region. In the mathematical literature, these processes are known as taboo processes, and despite their simplicity, at least compared to the reflecting stochastic differential equations approach, are surprisingly not much exploited in physics. This paper explores some aspect of taboo processes and other constrained processes in simple geometries: interval in one dimension, circular annulus in two dimensions, hollow sphere in three dimensions, and more. In particular, for the two-dimensional (2D) taboo process in a circular annulus, the Gaussian behavior of the stochastic angle is established.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Statistical Mechanics: Theory and Experiment
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.