Abstract

BackgroundThe human taste experience is the result of five basic taste qualities, namely sweet, salty, bitter, sour and umami. Sweet, bitter, and umami are mediated by G protein-coupled receptors (GPCRs), whereas sour and salt are modulated by specialized membrane channels. Taste perception starts with the interaction between a taste-active molecule (substance) and a specialized receptor located on the taste buds at the level of the cell membrane. Once the interaction has occurred, taste receptor cells are able to transduce the information content of the chemical stimulus into nerve signals directly to the brain. Therefore, the receptor-mediated recognition of taste molecules is the first episode leading to taste perception. Scope and approachIn this review, we provide a complete overview of in silico molecular modeling techniques applied to the study of umami, sweet, and bitter taste receptors. Structure-based computational tools, usually applied to investigate the binding mode of bioactive molecules into their targets and to rationally design new drug molecules, are proven equally useful in the field of chemical senses to shed light on the molecular acknowledgment of tastants. Key findings and conclusionsThe recent computational advancements in the taste research field, and particularly the computation-driven investigations of the tastant-receptor binding, provided a better understanding of the molecular mechanisms underlying food tastants’ sensing and could have an impressive contribution to the identification of new taste modulators in the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.