Abstract
An embedding of many-valued logics based on SIXTEEN in classical higher-order logic is presented. SIXTEEN generalizes the four-valued set of truth degrees of Dunn/Belnap’s system to a lattice of sixteen truth degrees with multiple distinct ordering relations between them. The theoretical motivation is to demonstrate that many-valued logics, like other non-classical logics, can be elegantly modeled (and even combined) as fragments of classical higher-order logic. Equally relevant are the pragmatic aspects of the presented approach: interactive and automated reasoning in many-valued logics, which have broad applications in computer science, artificial intelligence, linguistics, philosophy and mathematics, become readily enabled with state of the art reasoning tools for classical higher-order logic.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.