Abstract

Vidalia onions (Allium cepa L.) are sweet, short-day, low pungency, yellow Granex-type bulbs that are popular in the United States because of their mild flavor. There are limited studies on sweet onion plant growth in response to organic fertilization rate. The objective of this report was to evaluate the effects of organic fertilizer rates on sweet onion plant growth, and leaf and bulb mineral nutrients. Experiments were carried out at the Horticulture Farm, Tifton Campus, University of Georgia, in the Winters of 2012–13 and 2013–14. There were five treatments [organic fertilizer 3–2–3 equivalent to 0, 60, 120, 180, and 240 kg·ha−1 nitrogen (N)]. During the season and at the mature plant stage, root, stem, and bulb biomass increased whereas the root-to-shoot ratio decreased with increasing fertilization rate up to 120 kg·ha−1 N. Foliar concentrations of N and Ca decreased whereas Cu concentration increased with increasing organic fertilization rate. Bulb Mg and Mn increased whereas P and Cu decreased with increasing organic fertilization rate. The accumulation of mineral nutrients by onion whole plants increased quadratically (N, P, K, and S) or linearly (Ca and Mg) with increasing fertilization rate. The N use efficiency decreased with increasing organic fertilization rate; the agronomic efficiency of N (AEN) decreased quadratically and the marginal yield decreased linearly with increasing fertilization rate. Chlorophyll indices (CI) were highest with 240 kg·ha−1 N and lowest with 0 kg·ha−1 N. In conclusion, onion plant growth increased with increasing organic fertilizer rate probably because of augmented soil N levels. Observation of nutrient deficiencies late in the season, even at high organic fertilization rates, indicates that preplant application of organic fertilizer was sufficient to cover plant nutritional needs only partially and that applications of N fertilizer later in the season may be necessary. High application rates of organic fertilizer (above those required by the crop) may have resulted in significant N leaching because it is unlikely that the crop used most of the N that was mineralized. Bulb concentrations of P, K, Ca, Mg, S, B, Fe, Cu, and Mn were higher compared with values reported in the literature for onions produced with inorganic fertilizers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.