Abstract
Dedicated water channels are involved in the facilitated diffusion of water molecules across the cell membrane in plants. Transporter proteins are also known to transport water molecules along with substrates, however the molecular mechanism of water permeation is not well understood in plant transporters. Here, we show plant sugar transporters from the SWEET (Sugar Will Eventually be Exported Transporter) family act as water-conducting carrier proteins via a variety of passive and active mechanisms that allow diffusion of water molecules from one side of the membrane to the other. This study provides a molecular perspective on how plant membrane transporters act as water carrier proteins, a topic that has not been extensively explored in literature. Water permeation in membrane transporters could occur via four distinct mechanisms which form our hypothesis for water transport in SWEETs. These hypothesis are tested using molecular dynamics simulations of the outward-facing, occluded, and inward-facing state of AtSWEET1 to identify the water permeation pathways and the flux associated with them. The hydrophobic gates at the center of the transport tunnel act as a barrier that restricts water permeation. We have performed in silico single and double mutations of the hydrophobic gate residues to examine the changes in the water conductivity. Surprisingly, the double mutant allows the water permeation to the intracellular half of the membrane and forms a continuous water channel. These computational results are validated by experimentally examining the transport of hydrogen peroxide molecules by the AtSWEET family of transporters. We have also shown that the transport of hydrogen peroxide follows the similar mechanism as water transport in AtSWEET1. Finally, we conclude that similar water-conduction states are also present in other SWEET transporters due to the high sequence and structure conservation exhibited by this transporter family.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.