Abstract
The efficiency of path-planning in robot navigation is crucial in tasks such as search-and-rescue and disaster surveying, but this is emphasized even more when considering multi-rotor aerial robots due to the limited battery and flight time. In this spirit, this work proposes an efficient, hierarchical planner to achieve comprehensive visual coverage of large-scale outdoor scenarios for small drones. Following an initial reconnaissance flight, a coarse map of the scene gets built in real-time. Then, regions of the map that were not appropriately observed are identified and grouped by a novel perception-aware clustering process that enables the generation of continuous trajectories ( <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">sweeps</i> ) to cover them efficiently. Thanks to this partitioning of the map into a set of tasks, we can generalize the planning to an arbitrary number of drones and perform a well-balanced workload distribution among them. We compare our approach against a state-of-the-art method for exploration and show the advantages of our pipeline in terms of efficiency for obtaining coverage in large environments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.