Abstract

We compare the correlation times of the Sweeny and Gliozzi dynamics for two-dimensional Ising and three-state Potts models, and the three-dimensional Ising model for the simulations in the percolation representation. The results are also compared with Swendsen-Wang and Wolff cluster dynamics. It is found that Sweeny and Gliozzi dynamics have essentially the same dynamical critical behavior. Contrary to Gliozzi's claim [Phys. Rev. E 66, 016115 (2002)], the Gliozzi dynamics has critical slowing down comparable to that of other cluster methods. For the two-dimensional Ising model, both Sweeny and Gliozzi dynamics give good fits to logarithmic size dependences for the correlation times; for two-dimensional three-state Potts model, their dynamical critical exponent z is 0.49+/-0.01; the three-dimensional Ising model has z=0.37+/-0.02.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call