Abstract

ABSTRACT The purpose of this study was to investigate local sweat rate (LSR) and sweat composition before and after active or passive heat re-acclimation (HRA). Fifteen participants completed four standardized heat stress tests (HST): before and after ten days of controlled hyperthermia (CH) heat acclimation (HA), and before and after five days of HRA. Each HST consisted of 35 min of cycling at 1.5W·kg−1 body mass (33°C and 65% relative humidity), followed by a graded exercise test. For HRA, participants were re-exposed to either CH (CH-CH, n = 6), hot water immersion (water temperature ~40°C for 40 min; CH-HWI, n = 5) or control (CH-CON, n = 4). LSR, sweat sodium, chloride, lactate and potassium concentrations were determined on the arm and back. LSR increased following HA (arm +18%; back +41%, P ≤ 0.03) and HRA (CH-CH: arm +31%; back +45%; CH-HWI: arm +65%; back +49%; CH-CON arm +11%; back +11%, P ≤ 0.021). Sweat sodium, chloride and lactate decreased following HA (arm 25–34; back 21–27%, P < 0.001) and HRA (CH-CH: arm 26–54%; back 20–43%; CH-HWI: arm 9–49%; back 13–29%; CH-CON: arm 1–3%, back 2–5%, P < 0.001). LSR increases on both skin sites were larger in CH-CH and CH-HWI than CH-CON (P ≤ 0.010), but CH-CH and CH-HWI were not different (P ≥ 0.148). Sweat sodium and chloride conservation was larger in CH-CH than CH-HWI and CH-CON on the arm and back, whilst CH-HWI and CH-CON were not different (P ≥ 0.265). These results suggest that active HRA leads to similar increases in LSR, but more conservation of sweat sodium and chloride than passive HRA. Abbreviations: ANOVA: Analysis of variance; ATP: Adenosine triphosphate; BSA (m2): Body surface area; CH: Controlled hyperthermia; CH-CH: Heat re-acclimation by controlled hyperthermia; CH-CON: Control group (no heat re-acclimation); CH-HWI: Heat re-acclimation by hot water immersion; CV (%): Coefficient of variation; dt (min): Duration of a stimulus; F: Female; GEE: Generalized estimating equations; HA: Heat acclimation; HRA : Heat re-acclimation; HST: Heat stress test; LSR (mg·cm−2·min−1) : Local sweat rate; LOD (mmol·L−1): Limit of detection; M: Male; (mg): Mass of x; RH (%): Relative humidity; RT: Recreationally trained; SA (cm2): Surface area; t (min): Time; T: Trained; Tsk (°C): Skin temperature; Tre (°C): Rectal temperature; USG : Urine specific gravity; VO2peak (mL·kg−1·min−1): Peak oxygen uptake; WBSL (L): Whole-body sweat loss; WBSR (L·h−1): Whole-body sweat rate

Highlights

  • Sweat contains numerous important ions for maintaining body fluid balance, epidermal barrier homeostasis and antimicrobial function of the skin [1,2,3,4]

  • Sweat sodium and chloride conservation was larger in controlled hyperthermia (CH)-CH than CH-HWI and CH-CON on the arm and back, whilst CH-HWI and CH-CON were not different (P ≥ 0.265). These results suggest that active heat reacclimation (HRA) leads to similar increases in local sweat rate (LSR), but more conservation of sweat sodium and chloride than passive HRA

  • Sweat was successfully collected during HST1, 2, 3 and 4

Read more

Summary

Introduction

Sweat contains numerous important ions for maintaining body fluid balance, epidermal barrier homeostasis and antimicrobial function of the skin [1,2,3,4]. Sweating is an important heat loss mechanism, yet a disadvantage of an elevated sweat production is a concomitant elevation in ion losses, potentially disturbing fluid balance. If an individual is reexposed to a heat stimulus via heat reacclimation (HRA) following a decay period, there is some evidence to suggest a faster accrual of the lost adaptations [9,10]. This infor­ mation is limited to core temperature, heart rate and whole-body sweat loss (WBSL). LSR and the content of sweat during HA, the decay period and HRA are poorly understood

Objectives
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call