Abstract

Type-I food allergies are hypersensitive reactions compromising the immune organs and epithelial barriers. To investigate the organ-specific proteomic alterations of the allergy responses, the spleen and intestine of mice sensitized with high (shrimp and clam) and weak (fish) allergenic tropomyosins were analyzed using sequential windowed acquisition of all theoretical fragment ion mass spectra (SWATH-MS)-based proteomics. The results showed that Th1 and Th2 tropomyosin-induced responses in the spleen are characterized by the unique upregulation of innate (cochlin) and adaptive (Ig κ chain V-III region PC 7175) immune regulators, respectively. In the intestine, tropomyosin allergy concurred with the downregulation of 35 differentiating proteins featuring the overall impairment of metabolic pathways, absorption processes and ammonium ion responses. These data provide new functional biomarkers of tropomyosin-induced immune responses as well as candidate targets for intervention.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.