Abstract

Numerous studies have underscored the significant privacy risks associated with various leakage patterns in encrypted data stores. While many solutions have been proposed to mitigate these leakages, they either (1) incur substantial overheads, (2) focus on specific subsets of leakage patterns, or (3) apply the same security notion across various workloads, thereby impeding the attainment of fine-tuned privacy-efficiency trade-offs. In light of various detrimental leakage patterns, this paper starts with an investigation into which specific leakage patterns require our focus in the contexts of key-value, range-query, and dynamic workloads, respectively. Subsequently, we introduce new security notions tailored to the specific privacy requirements of these workloads. Accordingly, we propose and instantiate Swat, an efficient construction that progressively enables these workloads, while provably mitigating system-wide leakage via a suite of algorithms with tunable privacy-efficiency trade-offs. We conducted extensive experiments and compiled a detailed result analysis, showing the efficiency of our solution. Swat is about an order of magnitude slower than an encryption-only data store that reveals various leakage patterns and is two orders of magnitude faster than a trivial zero-leakage solution. Meanwhile, the performance of Swat remains highly competitive compared to other designs that mitigate specific types of leakage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.