Abstract

A stabilization and control technique developed for steering swarms of unmanned micro aerial vehicles is proposed in this paper. The presented approach based on a visual relative localization of swarm particles is designed for utilization of multi-robot teams in real-world dynamic environments. The core of the swarming behaviour is inspired by Reynold's BOID model proposed for 2D simulations of schooling behaviour of fish. The idea of the simple BOID model, with three simple rules: Separation, Alignment and Cohesion, is extended for swarms of quadrotors in this paper. The proposed solution integrates the swarming behaviour with the relative localization and with a stabilization and control mechanism, which respects fast dynamics of unmanned quadrotors. The proposed method aspires to be an enabling technique for deployment of swarms of micro areal vehicles outside laboratories that are equipped with precise positioning systems. The swarming behaviour as well as the possibility of swarm stabilization with the visual relative localization in the control feedback are verified by simulations and partly by an experiment with quadrotors in this paper.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call