Abstract

We construct a continuum model for the motion of biological organisms experiencing social interactions and study its pattern-forming behavior. The model takes the form of a conservation law in two spatial dimensions. The social interactions are modeled in the velocity term, which is nonlocal in the population density and includes a parameter that controls the interaction length scale. The dynamics of the resulting partial integrodifferential equation may be uniquely decomposed into incompressible motion and potential motion. For the purely incompressible case, the model resembles one for fluid dynamical vortex patches. There exist solutions which have constant population density and compact support for all time. Numerical simulations produce rotating structures which have circular cores and spiral arms and are reminiscent of naturally observed phenomena such as ant mills. The sign of the social interaction term determines the direction of the rotation, and the interaction length scale affects the degree o...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.