Abstract

Pseudomonas aeruginosa exploits several types of motility behaviours to colonize diverse environments. One of these is swarming motility, a coordinated group movement on a semi-solid surface. This bacterium needs to express a functional flagellum and produce rhamnolipids to display this type of social motility. A ΔhptB mutant, a gene part of the Gac/Rsm signalling pathway, produces rhamnolipids and expresses a functional flagellum but has an important swarming defect. Experimental-directed evolution was performed on this mutant under swarming conditions to obtain compensatory mutations and thus identify genes responsible for its deficient swarming phenotype. Unexpectedly, a gain-of-function subpopulation emerged from this evolution with mutations in lasR, which codes for a key quorum-sensing transcriptional regulator. Furthermore, we found that lasR- mutants even emerge at high frequencies in the wild-type strain when using the same experimental evolution strategy. The resulting evolved population, largely composed of LasR-defective mutants, is fitter than the original strain in swarming motility. We also established that lasR- mutants have a growth advantage under swarming conditions when compared with wild-type. Our results demonstrate that a social phenotype, that is, swarming motility, favours the emergence of mutants deficient in a quorum-sensing regulatory pathway to the benefit of the whole population.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.