Abstract
Particle swarm optimization and genetic algorithms are two classes of popular heuristic algorithms that are frequently used for solving complex multi-dimensional mathematical optimization problems, each one with its one advantages and shortcomings. Particle swarm optimization is known to favor exploitation over exploration, and as a result it often converges rapidly to local optima other than the global optimum. The genetic algorithm has the ability to overcome local extrema throughout the optimization process, but it often suffers from slow convergence rates. This paper proposes a new hybrid algorithm that nests particle swarm optimization operations in the genetic algorithm, providing the general population with the exploitation prowess of the genetic algorithm and a sub-population with the high exploitation capabilities of particle swarm optimization. The effectiveness of the proposed algorithm is demonstrated through solutions of several continuous optimization problems, as well as discrete (traveling salesman) problems. It is found that the new hybrid algorithm provides a better balance between exploration and exploitation compared to both parent algorithms, as well as existing hybrid algorithms, achieving consistently accurate results with relatively small computational cost.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.