Abstract

We present the hydrodynamic theory of coherent collective motion ("flocking") at a solid-liquid interface, and many of its predictions for experiment. We find that such systems are stable, and have long-range orientational order, over a wide range of parameters. When stable, these systems exhibit "giant number fluctuations," which grow as the 3/4th power of the mean number. Stable systems also exhibit anomalous rapid diffusion of tagged particles suspended in the passive fluid along any directions in a plane parallel to the solid-liquid interface, whereas the diffusivity along the direction perpendicular to the plane is not anomalous. In the remaining parameter space, the system becomes unstable.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call