Abstract
On 21 August 2017, during 16:49 UT and 20:02 UT period, a total solar eclipse started. The totality shadow occurred over the United States in time between ~17:15 UT and ~18:47 UT. When the solar radiation is blocked by the moon, observations of the ionospheric parameters will be important in the space weather community. Fortunately, during this eclipse, two Swarm satellites (A and C) flied at about 445 km through lunar penumbra at local noon of United States in the upper ionosphere. In this work, we investigate the effect of the solar eclipse on electron density, slant total electron content (STEC) and electron temperature using data from Swarm mission over United States. We use calibrated measurements of plasma density and electron temperature. Our results indicate that: (1) the electron density and STEC have a significant depletion associated with the eclipse; which could be due to dominance of dissociative recombination over photoionization caused by the reduction of ionizing extreme ultraviolet (EUV) radiation during the eclipse time (2) the electron temperature decreases, compared with a reference day, by up to ~150 K; which could be due to the decrease in photoelectron heating from reduced photoionization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.