Abstract
AbstractAuroral arcs occur in regions of upward field‐aligned currents (FACs); however, the relation is not one to one, since kinetic energy of the current‐carrying electrons is also important in the production of auroral luminosity. Multiple auroral arc systems provide an opportunity to study the relation between FACs and auroral brightness in detail. In this study, we have identified two types of FAC configurations in multiple parallel arc systems using ground‐based optical data from the Time History of Events and Macroscale Interactions during Substorms all‐sky imagers, magnetometers and electric field instruments on board the Swarm satellites. In “unipolar FAC” events, each arc is an intensification within a broad, unipolar current sheet and downward return currents occur outside of this broad sheet. In “multipolar FAC” events, multiple arc systems represent a collection of multiple up/down current pairs. By collecting 17 events with unipolar FAC and 12 events with multipolar FACs, we find that (1) unipolar FAC events occur most frequently between 20 and 21 magnetic local time and multipolar FAC events tend to occur around local midnight and within 1 h after substorm onset. (2) Arcs in unipolar FAC systems have a typical width of 10–20 km and a spacing of 25–50 km. Arcs in multipolar FAC systems are wider and more separated. (3) Upward currents with more arcs embedded have larger intensities and widths. (4) Electric fields are strong and highly structured on the edges of multiple arc system with unipolar FAC. The fact that arcs with unipolar FAC are much more highly structured than the associated currents suggests that arc multiplicity is indicative not of a structured generator deep in the magnetosphere, but rather of the magnetosphere‐ionosphere coupling process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.