Abstract

In recent years, continuous metaheuristics have been a trend in solving binary-based combinatorial problems due to their good results. However, to use this type of metaheuristics, it is necessary to adapt them to work in binary environments, and in general, this adaptation is not trivial. The method proposed in this work evaluates the use of reinforcement learning techniques in the binarization process. Specifically, the backward Q-learning technique is explored to choose binarization schemes intelligently. This allows any continuous metaheuristic to be adapted to binary environments. The illustrated results are competitive, thus providing a novel option to address different complex problems in the industry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.