Abstract
Depending on their rearing density, female desert locusts Schistocerca gregaria epigenetically endow their offspring with differing phenotypes. To identify the chemical basis for such maternal transmission, we compared solitarious and gregarious locust egg pod foam using high performance liquid chromatography (HPLC). We revealed causal relationships between foam chemistry and hatchling phenotype (phase state) by iteratively applying HPLC fractions from gregarious locust egg foam extracts to solitarious eggs and assessing resulting hatchlings with a behavioural bioassay involving logistic regression. Selection and application of increasingly specific HPLC fractions allowed us to isolate compounds with gregarizing properties. Hatchling gregarization was triggered only by certain fractions and was dose dependent. In a final series of experiments, we characterized the most specific gregarizing fraction by nuclear magnetic resonance (NMR) spectroscopy. Here we present tentative structural features of the primary locust maternal gregarizing agent, which appears to be an alkylated l-dopa analogue. In addition, we propose a mechanism for phase-dependent regulation of this compound's activity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.