Abstract

Abstract. Swarm satellite observations are used to characterize the extreme behavior of large- and small-scale field-aligned currents (FACs) during the severe magnetic storm of September 2017. Evolutions of the current intensities and the equatorward displacement of FACs are analyzed while the satellites cross the pre-midnight, pre-noon, dusk and dawn sectors in both hemispheres. The equatorward boundaries of FACs mainly follow the dynamics of the ring current as monitored in terms of the SYM-H index. The minimum latitude of the FAC boundaries is limited to 50∘ magnetic latitude (MLat). The FAC densities are very variable and may increase dramatically, especially in the nightside ionosphere during the storm-time substorms. At the peak of substorms, the average FAC densities reach >3 µA m−2. The dawn–dusk asymmetry is manifested in the enhanced dusk-side R2 FACs in both hemispheres. In the 1 Hz data filamentary high-density structures are always observed. In the pre-noon sector, the bipolar structures (7.5 km width FACs of opposite polarities adjacent to each other) dominate, while at the other local times the upward and downward FACs tend to be latitudinally separated. The most intense small-scale FACs, up to ∼80 µA m−2, are observed just in the post-midnight sector. Simultaneous magnetic and plasma perturbations indicate that this structure is likely a current system of a mesoscale auroral arc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call