Abstract

In the present study we propose a new hybrid version of Differential Evolution (DE) and Particle Swarm Optimization (PSO) algorithms called Hybrid DE or HDE for solving continuous global optimization problems. In the proposed HDE algorithm, information sharing mechanism of PSO is embedded in the contracted search space obtained by the basic DE algorithm. This is done to maintain a balance between the two antagonist factors; exploration and exploitation thereby obtaining a faster convergence. The embedding of swarm directions to the basic DE algorithm is done with the help of a "switchover constant" called α which keeps a record of the contraction of search space. The proposed HDE algorithm is tested on a set of 10 unconstrained benchmark problems and four constrained real life, mechanical design problems. Empirical studies show that the proposed scheme helps in improving the convergence rate of the basic DE algorithm without compromising with the quality of solution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.