Abstract

We consider hostile conflicts between two multi-agent swarms. First, we investigate the complex nature of a single pursuer attempting to intercept a single evader (1P-1E), and establish some rudimentary rules of engagement. The stability repercussions of these rules are investigated using a Lyapunov-based stability analysis. Second, we extend the modeling and stability analysis to interactions between multi-agent swarms of pursuers and evaders. The present document considers only swarms with equal membership strengths for simplicity. This effort is based on a set of suggested momenta deployed on individual agents. The control of group pursuit is divided into two phases: the approach phase during which the two swarms act like individuals in the 1P-1E interaction, and the assigned pursuit phase, where each pursuer follows an assigned evader. A simple, single-step dissipative control strategy, which results in undesirable control chatter, is considered first. A distributed control logic is then introduced, in order to ameliorate the chatter problems. In this new logic, the dissipative control action is spread out over a time window. A wide range of case studies is tested in order to quantify the parametric effects of the new strategy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.