Abstract

BackgroundThe global need for disease detection and control has increased effort to engineer point-of-care (POC) tests that are simple, robust, affordable, and non-instrumented. In many POC tests, sample collection involves swabbing the site (e.g., nose, skin), agitating the swab in a fluid to release the sample, and transferring the fluid to a device for analysis. Poor performance in sample transfer can reduce sensitivity and reproducibility.MethodsIn this study, we compared bacterial release efficiency of seven swab types using manual-agitation methods typical of POC devices. Transfer efficiency was measured using quantitative PCR (qPCR) for Staphylococcus aureus under conditions representing a range of sampling scenarios: 1) spiking low-volume samples onto the swab, 2) submerging the swab in excess-volume samples, and 3) swabbing dried sample from a surface.ResultsExcess-volume samples gave the expected recovery for most swabs (based on tip fluid capacity); a polyurethane swab showed enhanced recovery, suggesting an ability to accumulate organisms during sampling. Dry samples led to recovery of ∼20–30% for all swabs tested, suggesting that swab structure and volume is less important when organisms are applied to the outer swab surface. Low-volume samples led to the widest range of transfer efficiencies between swab types. Rayon swabs (63 µL capacity) performed well for excess-volume samples, but showed poor recovery for low-volume samples. Nylon (100 µL) and polyester swabs (27 µL) showed intermediate recovery for low-volume and excess-volume samples. Polyurethane swabs (16 µL) showed excellent recovery for all sample types. This work demonstrates that swab transfer efficiency can be affected by swab material, structure, and fluid capacity and details of the sample. Results and quantitative analysis methods from this study will assist POC assay developers in selecting appropriate swab types and transfer methods.

Highlights

  • Diagnostics for non-blood-associated pathogens often use swabs as a specimen-collecting tool

  • Commercial lateral flow tests (LFTs) that are being used with swabs worldwide include rapid streptococcal antigen assays, respiratory syncytial virus (RSV) assays: BinaxNOW RSV Lateral Flow (Alere Inc., Waltham, MA), RSV Respi-Strip (Coris Bioconcept, Namur, Belgium); and influenza detection tests: BinaxNOW Influenza A&B Card (Alere Inc., Waltham, MA), QuickVue Influenza Test (Quidel Corp., San Diego, CA)

  • We present methods to quantify swab transfer efficiency, discuss potential pitfalls that could bias quantitative analysis, and evaluate transfer efficiency for a range of swab types, sample properties, and manual agitation methods that meet the unique needs for POC applications

Read more

Summary

Introduction

Diagnostics for non-blood-associated pathogens often use swabs as a specimen-collecting tool. Swabs are typically agitated by vortex mixing to release organisms into a transfer fluid [11,12,13,14,15] that is analyzed by culture, immunoassays (ELISA), or nucleic acid tests (PCR). Swab sampling and fluid transfer are used in lateral flow tests (LFTs) intended for point-of-care (POC) testing in nonlaboratory settings. Since the sensitivity of LFTs is typically lower than laboratory-based tests, there is a need to maximize transfer of sample from the swab to the device. In many POC tests, sample collection involves swabbing the site (e.g., nose, skin), agitating the swab in a fluid to release the sample, and transferring the fluid to a device for analysis. Poor performance in sample transfer can reduce sensitivity and reproducibility

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call