Abstract

Cone penetrometer resistance in saturated sands has been shown by earlier workers to be an exponential function of a state parameter in critical state space. The present investigation demonstrates that this concept of a state parameter-penetrometer function (SPP-function) also holds good in a partly saturated agricultural soil. The two coefficients which characterize the SPP-function have been evaluated from extensive tests carried out in a miniature penetrometer calibration chamber. These coefficients were found to vary in a systematic manner with the moisture content of the sandy loam soil used in the experiments, as do the three basic parameters necessary to characterize the critical state boundaries of this soil. The paper presents a method of using this experimentally obtained information to interpret the pore space of the soil from measured penetrometer resistance in that soil. The performance of the proposed method was checked against penetrometer readings made under carefully controlled laboratory conditions in an indoor soil tank. The prediction accuracy was poor, but it is felt that this could be improved by using an iterative solution in place of the single step method used in the validation. The tedious and time consuming experimental work described in the paper is confined to a single sandy loam soil, typical of a light agricultural soil. In order to generalize the solution, it is necessary to test the procedure over a wide range of soils, including clay. If the SPP-functions can be established for these conditions then the state parameter concept could prove to be a powerful tool in the interpretation of cone penetrometer readings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call