Abstract

Electrical imaging logging in high-resistivity oil-based mud (OBM) has been one of the hotspots in petroleum exploration and development recently. Compared with the traditional electrical imaging logging in water-based mud (WBM), the core issue restricting the application of electrical imaging logging in OBM is that the mud-layer with high impedance prevents the emitted current from flowing into the formation and seriously disturbs the measurement of formation properties. Here, a SVR (support vector machine regression)-based weighted processing method is proposed to resolve the intractable problem and three key parameters are obtained simultaneously. First, the equivalent circuit model of electrical imaging logging in OBM is established and the drawback especially occurring in low-resistivity formation is analyzed. Then, a weighted coefficient applied to the mud-layer impedance is introduced for the quantitative calculation of formation resistivity, and the change of relative formation permittivity and mud-layer thickness can also be depicted with weighted processing. Next, a SVR model is established to inverse the weighted coefficient and then figure out the inversed parameters including the formation resistivity, the relative formation permittivity, and the mud-layer thickness. A stochastic parameter model is adopted to verify the validity of SVR model. Finally, two deviated formation models further test the advantage and robustness of SVR model. The results demonstrate that the SVR-based weighted processing method possesses a terrific performance and all the three parameters can be calculated simultaneously regardless of the borehole wall condition. This study will provide a new approach to the data processing and interpretation of electrical imaging logging in OBM.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.