Abstract

Prediction of time series data is of relevance for many industrial applications. The prediction can be made in one-step and multi-step ahead. For predictive maintenance, multi-step-ahead prediction is of interest for projecting the evolution of the future conditions of the equipment of interest, computing the remaining useful life and taking corresponding maintenance decisions. Recursive prediction is one of the popular strategies for multi-step-ahead prediction. SVM is a popular data-driven approach that has been used for recursive multi-step-ahead prediction. Tuning the hyperparameters in SVM during the training process is challenging, and normally the hyperparameters are tuned by solving an optimization problem. This paper analyses the possible objectives of the optimization for tuning hyperparameters. Through experiments on one synthetic dataset and two real time series data, related to the prediction of wind speed in a region and leakage from the reactor coolant pump in a nuclear power plant, a bi-objective optimization combining mean absolute derivatives and accuracy on all prediction steps is shown to be the best choice for tuning SVM hyperparameters for recursive multi-step-ahead prediction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.