Abstract

Membrane proteins play important roles in molecular trans-membrane transport, ligand–receptor recognition, cell–cell interaction, enzyme catalysis, host immune defense response and infectious disease pathways. Up to present, discriminating membrane proteins remains a challenging problem from the viewpoints of biological experimental determination and computational modeling. This work presents SVM ensemble based transfer learning model for membrane proteins discrimination (SVM-TLM). To reduce the data constraints on computational modeling, this method investigates the effectiveness of transferring the homolog knowledge to the target membrane proteins under the framework of probability weighted ensemble learning. As compared to multiple kernel learning based transfer learning model, the method takes the advantages of sparseness based SVM optimization on large data, thus more computationally efficient for large protein data analysis. The experiments on large membrane protein benchmark dataset show that SVM-TLM achieves significantly better cross validation performance than the baseline model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.