Abstract

AbstractExtreme Learning Machine provides very competitive performance to other related classical predictive models for solving problems such as regression, clustering, and classification. An ELM possesses the advantage of faster computational time in both training and testing. However, one of the main challenges of an ELM is the selection of the optimal number of hidden nodes. This paper presents a new approach to node selection of an ELM based on a 1-norm support vector machine (SVM). In this method, the targets of SVM yi ∈{+1, –1} are derived using the mean or median of ELM training errors as a threshold for separating the training data, which are projected to SVM dimensions. We present an integrated architecture that exploits the sparseness in solution of SVM to prune out the inactive hidden nodes in ELM. Several experiments are conducted on real-world benchmark datasets, and the results attained attest to the efficiency of the proposed method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.