Abstract

This paper presents an improved support vector machine (SVM) algorithm, which employs invariant moments-based edge extraction to obtain feature attribute. A heuristic attribute reduction algorithm based on rough set’s discernible matrix is proposed to identify and classify micro-targets. To avoid the complicated calibration for intrinsic parameters of camera, an improved Broyden’s method is proposed to estimate the image Jacobian matrix which employs Chebyshev polynomial to construct a cost function to approximate the optimization value. Finally, a visual controller is designed for a robotic micromanipulation system. The experiment results of micro-parts assembly show that the proposed methods and algorithms are effective and feasible.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.