Abstract

The primary goal of linear discriminant analysis (LDA) in face feature extraction is to find an effective subspace for identity discrimination. The introduction of kernel trick has extended the LDA to nonlinear decision hypersurface. However, there remained inherent limitations for the nonlinear LDA to deal with physical applications under complex environmental factors. These limitations include the use of a common covariance function among each class, and the limited dimensionality inherent to the definition of the between-class scatter. Since these problems are inherently caused by the definition of the Fisher's criterion itself, they may not be solvable under the conventional LDA framework. This paper proposes to adopt a margin-based between-class scatter and a regularization process to resolve the issue. Essentially, we redesign the between-class scatter matrix based on the SVM margins to facilitate an effective and reliable feature extraction. This is followed by a regularization of the within-class scatter matrix. Extensive empirical experiments are performed to compare the proposed method with several other variants of the LDA method using the FERET, AR, and CMU-PIE databases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.