Abstract

Recently severed subspace methods have appeared in the literature for multivariable discrete-time state space identification, where state space models are computed directly from input/output data. These state space identification methods are viewed as the better alternatives to polynomial model identification, owing to the better numerical conditioning associated with state space models, especially for high-order multivariable systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.