Abstract

Hotspot tracks represent plate motions relative to mantle sources, and paleomagnetic data from magmatic units along those tracks can quantify motions of those mantle anomalies relative to the Earth's magnetic field and rotational axis. The Ediacaran Period is notable for rapid and large paleomagnetic apparent polar wander (APW) for many continents. Whereas magmatic units attributed to the mantle plume suggest a practically stationary hotspot track, paleolatitudes of Laurentia for that interval vary dramatically; geologic and paleomagnetic data are at odds unless true polar wander (TPW) is invoked to explain a majority of APW. Here we test the plume-TPW hypothesis by generating the predicted Sutton hotspot track for a station- ary plume under a moving plate along the Laurentian margin during the interval from 615 to 530 Ma. Our model is the first to provide a kinematic framework for the extensive large igneous province associated with opening the Iapetus Ocean.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.