Abstract

In this paper, a simple parameter switching (PS) methodology is proposed for sustaining the stable dynamics of a fractional-order chaotic financial system. This is achieved by switching a controllable parameter of the system, within a chosen set of values and for relatively short periods of time. The effectiveness of the method is confirmed from a computer-aided approach, and its applications to chaos control and anti-control are demonstrated. In order to obtain a numerical solution of the fractional-order financial system, a variant of the Grünwald–Letnikov scheme is used. Extensive simulation results show that the resulting chaotic attractor well represents a numerical approximation of the underlying chaotic attractor, which is obtained by applying the average of the switched values. Moreover, it is illustrated that this approach is also applicable to the integer-order financial system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.