Abstract

Antifouling performance of membranes is the key obstacle limiting their practical applications for oil/water separation. In this study, a sustaining antifouling membrane was fabricated by constructing polydopamine (PDA) micro-/nano-spheres on a polyacrylonitrile (PAN) nanofibrous membrane. The secondary PDA nano-spheres not only strengthened the bonding of primary micro-spheres with the substrate, but also diversified the hierarchical structure and chemistry. The composite showed enhanced superhydrophilicity and underwater superoleophobicity. Permeability of PAN-PDAc membrane was maintained as high as 11666 ± 978 Lm−2h−1bar−1 with separation efficiency of higher than 99.9% over a 2-h continuous filtration. This permeability was about 2.7 times of pristine PAN membrane (4260 ± 430 Lm−2h−1bar−1). The extrusion and cutting demulsification on the confined space of PAN-PDA surface was proposed. Antifouling mechanism of the superhydrophilic membrane was first theoretically elucidated based on hydration ability and adhesion free energy with recourse to thermal analysis and Derjaguin-Landau-Verwey-Overbeek theory respectively. It was found that PDA micro-/nano-spheres mediated membrane showed strong hydration ability (higher fraction of non-freezable water) and weak adhesion towards toluene (low free energy of adhesion) compared to pristine PAN membrane. These findings would lead to a better understanding of antifouling demulsification mechanism and improved design of sustaining antifouling membranes for oil/water separation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.