Abstract
Balancing the nitrogen (N) budgets of agricultural systems is essential for sustaining yields at lower environmental costs. However, it is still rare to find reports on the total N budgets of agricultural systems including all N fluxes in the literature. Here, we conducted a comprehensive study on the effects of different N fertilizers (control, synthetic fertilizer, 60% synthetic fertilizer N plus 40% pig manure N, pig manure N applied at the same rate of 280kgNha−1 yr−1) on N pools, cycling processes, fluxes and total N balances in a subtropical wheat-maize rotation system in China by monitoring in situ N fluxes combined with field 15N-tracer and 15N isotope-dilution techniques. The warm and wet maize season was associated with significantly larger N losses via gaseous and hydrological pathways than the cooler and drier wheat season. Nitrate leaching and NH3 volatilization were the main N loss pathways, accounting for 78% and 93% of the annual hydrological and gaseous N losses, respectively. The field 15N tracing experiment showed that the wheat system had a high N retention capacity (∼50% of 15N application), although the N residence time was short. In the subsequent maize season, 90% of the residual 15N-labeled fertilizer in the soil that had been applied to the wheat system was utilized by plants or lost to the environment. The combined application of synthetic and organic fertilizers (pig manure) or application of pig manure resulted in significantly higher soil N retention and lower NO3− leaching, while yields remained unaffected. However, the application of manure resulted in larger NH3 volatilization losses compared with the application of synthetic fertilizer alone. Thus, our study suggests that a combination of synthetic and organic N fertilizers is suitable for sustaining agricultural productivity while reducing environmental N losses by fostering interactions between the soil C and N cycles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.