Abstract
Wnt genes encode a number of secreted glycoproteins which are closely associated with the cell surface and the extracellular matrix. Recently, members of Wnt family have been implicated in regulating chondrocyte differentiation, but their roles in the chondrogenic process are not fully understood. To contribute to an understanding of the roles of Wnts during chondrogenesis, we have analysed the spatiotemporal expression patterns of Wnt using in vitro models for chondrogenesis of human bone marrow-derived mesenchymal stem cells (hMSCs). In chondrogenic aggregate culture system, RT-PCR analysis revealed expression of Wnt5a and Wnt4 during late chondrogenesis (days 10 and 15). Immunohistochemical analysis showed widespread distribution of Wnt5a and Wnt4 throughout the aggregates at this late phase of culture (days 14 and 21). In addition, in this aggregate culture system, immunohistochemical staining of Wnt4 and Wnt5a showed similar spatiotemporal expression patterns to that of type II collagen or type X collagen. To confirm the results obtained by immunostaining, the specificity of the anti-Wnt4 or anti-Wnt5a antibody was assessed by Western blot analysis. Of Wnt4 and Wnt5a, only Wnt5a was immunodetectable by Western blot analysis. Western blot analysis showed that Wnt5a was expressed as two different molecular weight forms of 40 and 44 kDa. Treatment with PNGase F, which removes N-linked oligosaccharides, revealed that the mass difference between these two forms could be accounted for by the N-glycosylation status of the protein. When hMSCs were seeded on a porous gelatin sponge, immunolocalization studies showed that type II collagen and type X collagen were detected particularly at the periphery at day 7 of culture. In contrast, Wnt4 and Wnt5a showed even distribution throughout the hMSC/gelatin sponge constructs. Their different spatial expression patterns suggest that Wnt4 and Wnt5a proteins are not functionally linked to type II collagen and type X collagen synthesis in in vitro chondrogenic models of hMSCs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.