Abstract

Abstract Like many coastal communities throughout the mid-Atlantic region, relative sea level rise and accelerating instances of coastal nuisance flooding are having a tangible negative impact on economic activity and infrastructure in Annapolis, Maryland. The drivers of coastal nuisance flooding, in general, are a superposition of global, regional, and local influences that occur across spatial and temporal scales that determine water levels relative to a coastal datum. Most of the research to date related to coastal flooding has been focused on high-impact episodic events, decomposing the global and regional drivers of sea level rise, or assessing seasonal-to-interannual trends. In this study, we focus specifically on the role of short-duration (hours) meteorological wind forcing on water level anomalies in Annapolis. Annapolis is an ideal location to study these processes because of the orientation of the coast relative to the prevailing wind directions and the long record of reliable data observations. Our results suggest that 3-, 6-, 9-, and 12-h sustained wind forcing significantly influences water level anomalies in Annapolis. Sustained wind forcing out of the northeast, east, southeast, and south is associated with positive water level anomalies, and sustained wind forcing out of the northwest and north is associated with negative water level anomalies. While these observational results suggest a relationship between sustained wind forcing and water level anomalies, a more robust approach is needed to account for other meteorological variables and drivers that occur across a variety of spatial and temporal scales. Significance Statement Coastal nuisance flooding, often the result of positive water level anomalies, is having a negative economic impact in Annapolis, Maryland. Coastal flooding research has primarily focused on high-impact episodic events, trends in sea level rise, or seasonal to interannual variability in flooding. In this study we show that short-duration wind forcing (≤12 h) likely has a significant impact on both positive and negative water level anomalies in Annapolis. While this was empirically known by local stakeholders, in this study we attempt to quantify the relationship. These results could help local stakeholders to mitigate against economic and infrastructure losses resulting from coastal nuisance flooding.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call