Abstract

AbstractCaldera systems are often restless and experience pulses of uplift and subsidence, with a weak, but significant link to eruption. Characterizing the spatial and temporal patterns of deformation episodes provides insight into the processes responsible for unrest and the architecture of magmatic and hydrothermal systems. Here we combine interferometric synthetic aperture radar images with data from Global Positioning System and a network of seismometers at a continental rift caldera Corbetti, Ethiopia. We document inflation that started mid‐2009 and is ongoing as of 2017, with associated seismicity. We investigate the temporal evolution of the deformation source using a Hastings‐Metropolis algorithm to estimate posterior probability density functions for source model parameters and use the Akaike information criterion to inform model selection. Testing rectangular dislocation and point sources, we find a point source at a depth of 6.6 km (95% confidence: 6.3 − 6.8 km) provides the statistically justified fit. The location of this source is coincident with a conductive anomaly derived from magnetotelluric measurements. We use a joint inversion of two geodetic data sets to produce a time series, which shows a volume input of 1.0 × 107 m3/year. This is the first observation of a prolonged period of magma reservoir growth in the Main Ethiopian Rift and has implications for hazard assessment and monitoring. Corbetti is < 20 km from two major population centers and has estimated return periods of ∼500 and ∼900 years for lava flows and Plinian eruptions, respectively. Our results highlight the need for long‐term geodetic monitoring and the application of statistically robust methods to characterize deformation sources.

Highlights

  • We investigate the temporal evolution of the deformation source using a Hastings-Metropolis algorithm to estimate posterior probability density functions for source model parameters and use the Akaike information criterion to inform model selection

  • Rifting initially begins as a zone of diffuse faulting, which transitions into being driven through repeated magmatic intrusions in a narrow region along the rift axis (Beutel et al, 2010; Ebinger et al, 2017)

  • In this paper we focus on the surface deformation of a Main Ethiopian Rift (MER) silicic caldera, Corbetti, to investigate the magmatic storage conditions and temporal evolution, for example, pulsed versus continuous supply

Read more

Summary

Introduction

In continental rift systems four major styles of volcanism are observed: large silicic centers along the rift axis (Abebe et al, 2007), spatially distributed fields of basaltic monogenetic volcanism (Mazzarini et al, 2004), fissure eruptions (Pagli et al, 2012), and off-rift volcanism (Maccaferri et al, 2014). Each of these styles is a product of different magma reservoir architectures and storage conditions. To investigate the temporal evolution of the source, we combine our data through the use of a source model to jointly invert for the cumulative volume change

Background
Surface Deformation
Time Series Analysis
Inverse Modeling
Volume Change Time Series Results
New and Existing Subsurface Geophysics
Findings
Discussion
Conclusions
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call